Using state-of-the-art methods for measuring the frequency of light waves bouncing along the fiber-optic cable, Marra and colleagues examined the noise and found that — like DAS — their technique detected events like earthquakes through changes in the light frequencies.
Instead of pulses, though, they use a continuous beam of laser light. And unlike in DAS, the laser light travels out and back on a loop; then the researchers compare the light that comes back with what they sent out. When there are no disturbances in the cable, those two signals are the same. But if heat or vibrations in the environment disturb the cable, the frequency of the light shifts.
With its research-grade light source and measurement of a large amount of the light initially emitted — as opposed to just what’s reflected — this approach works over longer distances than DAS does. In 2018, Marra’s team demonstrated that they could detect quakes with undersea and underground fiber-optic cables up to 535 kilometers long, far exceeding DAS’s limit of around 100 kilometers.
This offers a way to monitor the deep ocean and Earth systems that are usually hard to reach and rarely tracked using traditional sensors. A cable running close to the epicenter of an offshore earthquake could improve on land-based seismic measurements, providing perhaps minutes more time for people to prepare for a tsunami and make decisions, Marra says. And the ability to sense changes in seafloor pressure may open the door to directly detecting tsunamis too.
On Grímsvötn, a research team prepares to deploy a cable onto a floating ice field on the volcano’s caldera. Data from that cable have revealed that the ice field acts as a loudspeaker, amplifying seismic tremors from below. Credit: Andreas Fichtner
In late 2021, Marra’s team managed to sense seismicity across the Atlantic on a 5,860-kilometer optical cable running on the seafloor between Halifax in Canada and Southport in England. And they did so with far greater resolution than before, because while earlier measurements relied on accumulated signals from across the entire submarine cable’s length, this work parsed changes in light from roughly 90-kilometer spans between signal-amplifying repeaters.
Fluctuations in intensity of the signal picked up on the transatlantic cable appear to be tidal currents. “These are essentially the cable being strummed as a guitar string as the currents go up and down,” Marra says. While it’s easy to watch currents at the surface, seafloor observations can improve an understanding of ocean circulation and its role in global climate, he adds.
So far, Marra’s team is alone in using this method. They’re working on making it easier to deploy and on providing more accessible light sources.
Researchers are continuing to push sensing techniques based on optical fibers to new frontiers. Earlier this year, Fichtner and a colleague journeyed to Greenland, where the East Greenland Ice-Core Project is drilling a deep borehole into the ice sheet to remove an ice core. Fichtner’s team then lowered a fiber-optic cable 1,500 meters, by hand — and caught a cascade of icequakes, rumbles that result from the bedrock and ice sheet rubbing together.
Icequakes can deform ice sheets and contribute to their flow toward the sea. But researchers haven’t had a way before now to investigate how they happen: They are invisible at the surface. Perhaps fiber optics will finally bring their hidden processes into the light.
10.1146/knowable-112222-3
Carolyn Wilke is a Chicago-based freelance science journalist. Find her on Twitter @carolynmwilke.
This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.