Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Stars like our Sun turn into crystals late in life

Though astronomers have long theorized such crystallization occurs in aging Sun-like stars, new research finally has uncovered direct evidence.
whitedwarfcrystal
This artist's concept shows the crystallized core of a white dwarf star.
University of Warwick/Mark Garlick

Stars like our sun can turn into crystals in the final stages of their lives, bringing a whole new meaning to those glittering jewels in the sky. Astronomers from the University of Warwick say they’ve found the first direct evidence that white dwarf stars – the dense, stellar corpses of stars like our sun – can crystallize, or turn from a liquid into a solid. The discovery was published Wednesday in the journal Nature.

Astronomers had long suspected such crystallization was possible. But to find direct evidence, the team turned to data gathered by the European Space Agency’s Gaia satellite and analyzed some 15,000 white dwarf candidates. In the process, they uncovered a “pile-up” of stars with colors and luminosities that matched those predicted for crystallized white dwarfs.

The discovery, led by physicist Pier-Emmanuel Tremblay, was announced exactly 50 years after it was first predicted.

“All white dwarfs will crystallize at some point in their evolution,” Tremblay said in a media release. “This means that billions of white dwarfs in our galaxy have already completed the process and are essentially crystal spheres in the sky. The sun itself will become a crystal white dwarf in about 10 billion years.”

White dwarfs are extremely dense stars, so the positively charged nuclei in their cores exist as a fluid, the scientists say. But as the star cools, that fluid solidifies and creates a metal core. And because white dwarfs are among our cosmos’ oldest stellar objects, with predictable life stages, astronomers often use them as “clocks” to date surrounding groups of stars. So understanding this crystallization process could bring greater accuracy when scientists assign ages to the stars.

0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter. View our Privacy Policy.

ADVERTISEMENT
ADVERTISEMENT
asy_darkmatter_300x250

Click here to download a FREE Women in Astronomy PDF curated by Astronomy magazine.

Find us on Facebook